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The cross-coupling of Grignard reagents with alkyl bromides

and tosylates has been achieved by the use of g3-allylnickel and

g3-allylpalladium complexes as catalysts.

Transition metal-catalyzed cross-coupling reactions of organic

halides with organometallic reagents are among the most

important transformations in organic synthesis, especially for

building complex structures of compounds from readily available

components.1 As for the substrates, a variety of organometallic

reagents have been employed, whereas the scope of the coupling

partner had long been limited to aryl and alkenyl halides. The use

of alkyl halides usually gave unsatisfactory results due mainly to

the slow oxidative addition to transition metal catalysts and the

fast b-elimination from the alkylmetal intermediates. During the

past several years,2,3 cross-coupling reaction of alkyl halides with

organometallic reagents has been studied extensively, however, and

alkyl halides as well as sulfonates have now become promising

candidates as reagents in transition metal catalyzed cross-coupling

reaction. As a practical method for such transformations, we

developed a unique catalytic system where Ni and Pd catalyzes

cross-coupling of alkyl fluorides, chlorides, bromides and tosylates

with Grignard reagents in the presence of conjugated dienes such

as 1,3-butadiene, isoprene, or bisdienes (Scheme 1).4

In this catalytic system, bis(g3-allyl)nickel or bis(g3-allyl)palla-

dium complexes (1) formed by the reaction of M(0) [M = Ni, Pd]

with 2 molecules of 1,3-butadienes were proposed to be involved as

key intermediates.

To prove the intermediary of bis(g3-allyl)metal complexes and

to reveal, if so, whether the ethylene tether (CH2CH2) between two

allyl ligand is essential or not, we examined the reaction using the

simplest bis(g3-allyl)metal complexes 2 as catalysts. As a result,

here we disclose that cross-coupling of alkyl bromides and

tosylates with Grignard reagents proceeded efficiently without

using conjugated diene additives in the presence of Pd and Ni

complexes having g3-allyl ligands (Scheme 2).

Table 1 summarizes the results obtained by the reaction of

n-decyl bromide with n-butylmagnesium chloride or methylmag-

nesium bromide (1.3 equiv.) for 3 h using various catalysts in THF.

When PdCl2 (0.1 equiv.) was employed only a trace amount of the

cross-coupling product was obtained, and significant amounts of

decane (54%) and decenes (26%) were formed (entry 1).

No reaction took place with PdCl2(PPh3)2 (entry 2). Although

(g3-allyl)palladium chloride gave only 10% yield of tetradecane,

bis(g3-allyl)palladium5 complex afforded a moderate yield of

cross-coupling product (entries 3 and 4). When a methyl Grignard

reagent was employed, both mono- and bis(g3-allyl)palladium

complexes gave satisfactory yields of product, whereas Pd

complexes having no g3-allyl ligands again failed to catalyze this

reaction (entries 5–8).6 Nickel complexes having no g3-allyl ligands

were also ineffective (entries 9 and 10). Bis(g3-allyl)nickel catalyst

shows by far the highest activity for both butyl and methyl

Grignard reagents (entries 12 and 16). Mono(g3-allyl)nickel

complex afforded a successful result when MeMgBr was employed

but not in the case of nBu-MgCl (entries 11 and 15).

Results of some other representative combinations of substrates

using bis(g3-allyl)nickel are shown in Table 2. This cross-coupling

reaction also proceeds efficiently by using alkyl tosylates (entries 1,

2 and 5). Aryl Grignard reagents afforded the corresponding

coupling product in good yield (entry 2). When the reaction of

5-hexenyl bromide with n-butylmagnesium chloride were carried

out, 1-decene was obtained as the sole coupling product in 91%

yield without the formation of pentylcyclopentane, suggesting that

the 5-hexenyl radical, which may undergo ring-closing, was not

formed (entry 3).7 Cyclopropylmethyl bromide gave only non-

ylcyclopropane as a coupling product (entry 4).8 These results rule

out a radical mechanism. It should be noted that a bromo

substituent on the aryl ring remained intact in this reaction system
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(entry 5). A sterically hindered Grignard reagent also gave a

moderate yield of the corresponding coupling product (entry 6).

A plausible reaction pathway is depicted in Scheme 3. Bis(g3-

allyl)metal complex 2 reacts with Grignard reagents to form a

bis(g1,g3-allyl)metal complex 3. This anionic complex would

possess enhanced nucleophilicity at the metal centre toward alkyl

halides. Coupling products were formed by nucleophilic attack of

3 to alkyl halides yielding dialkylmetal complexes 4 followed by

reductive elimination.

To confirm the validity of this proposed pathway, we examined

the stoichiometric reaction of alkyl halides with the anionic

bis(g1,g3-allyl) complex 3. As might be expected, bis(g1,g3-

allyl)palladate complex (39),9,10 formed by the reaction of

bis(p-allyl)palladium with EtMgBr, reacted with n-hexyl bromide

at 260 uC for 3 h, giving rise to nearly equal amounts of octane

(38% GC yield) and bis(g3-allyl)palladium (35% NMR yield)

(Scheme 4). This result suggests that anionic complex (39)

undergoes substitution reaction with alkyl bromides to give the

corresponding coupling products along with generation of bis(g3-

allyl)palladium. It should be noted that possible products,

1-pentene or 1-nonene by the reductive elimination of an allyl

group of intermediate 4 in Scheme 3 were not formed from GC

and NMR analysis. This fact is in accord with the evidence that

reductive elimination proceeds preferentially with alkyl group than

allyl group.11 When the reaction was conducted using n-decyl

bromide at 230 uC for 20 h, dodecane was formed in 66% yield

but 2b could not be detected in the resulting mixture.

In conclusion, Ni and Pd catalysts bearing simple allyl ligands

were found to catalyze cross-coupling reaction of Grignard

reagents with alkyl bromides and tosylates. This reaction proceeds

efficiently by the use of alkyl- or arylmagnesium halides. It was

revealed that two allyl ligands are essential to attain high yields of

the cross-coupling products.
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